Advanced Topics in Random Graphs Exercise Sheet 1

Question 1. Show that for most matrices A any linear program which computes the transformation $x \mapsto Ax$ requires $\Omega\left(\frac{n^2}{\log n}\right)$ gates.

(*) Show that the underlying graph of any linear program which computes the transformation $x \mapsto Ax$ for a super regular matrix A must be a super concentrator.

Question 2. Show using a greedy argument that there exists an $\epsilon > 0$ such that there exist arbitrarily large dictionaries with rate and distance at least ϵ .

Question 3. Verify that there is some constant n_0 such that if $d \ge 32$, $n \ge n_0$, $m \ge \frac{3n}{4}$ and $\frac{n}{10d} < s \le \frac{n}{2}$

$$\left(\frac{en}{s}\right)^s \left(\frac{em}{s}\right)^s \left(\frac{s}{m}\right)^{sd} < 20^{-s}$$

and if $s \leq \frac{n}{10d}$ then

$$\left(\frac{en}{s}\right)^s \left(\frac{8em}{5ds}\right)^{\frac{3ds}{8}} \left(\frac{5ds}{8m}\right)^{sd} \le 20^{-s}.$$

Question 4. Let G be an (n, d)-graph and let $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$ be the eigenvalues of G with associated eigenvectors v_1, v_2, \ldots, v_n . Show that

- i) $\lambda_1 = d$ and the corresponding eigenvector is $v_1 = \frac{1}{\sqrt{d}} \mathbf{1} = (\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}, \dots, \frac{1}{\sqrt{d}}).$
- ii) G is connected iff $\lambda_1 > \lambda_2$.
- iii) A connected graph G is bipartite iff $\lambda_1 = -\lambda_n$.

Question 5. Let G be an (n, d, α) -graph. Show that

- i) The largest independent set in G has size at most αn .
- ii) G has chromatic number at least $\frac{1}{\alpha}$.
- iii) G has diameter $O(\log n)$.